
N90_2<,

t_,vian \\Tilcox

A:lt, onon:ous Sensor-Based D::al-A:ln _0atellite GrapI)ling

l'(a:ll Tso Todd Litwin Salmd Ilavati

Jet. Propulsion l,aboralor3
('alifovnia Insl.itut, e of 'Tcclln(, ogy

Pasadena, (:A 9110!1

Bruce Ben

Abstract

The NASA Tch'robotic I/esearch Project is exploring lhe fi asil,ility of using rolmls in space

for on-orBit assembly, maintenance, and repair operalions. I), al-arm salellite grappling is one

of its more challenging tasks.
The t_sk involves the integration of technologies developc, l in lhe Sensing and I_ercept.ion

(S,_:P) Subsystem for object acquisition and tracking, and the).lanilmlator Centre[and Mech-

anizat.ion (MCM) Subsystem for dual-arm control. S,_P acqu,res and tracks the position, ori-
entation, velocity, and angular velocity of a slowly spimfing s:t.ellite, and sends tracking data

to the M(_M subsystem. MCM grapples the satellite and 1,rings it to rest, controlling the arms
so that no excessive forces or torques are exerled on the sat.ell;te or arms.

The demonstration setup includes a 350-potmd satellile nlockul) which can spin fl'eely on

a gimbal for several ntinutes, closely simulating the dynatuics of a real satellite. The satellite

mockup is fitted with a panel under which inay be mount,,.l various elements such as line

replacement tnodules and electrical connectors that will I., us_ d t,o demonstrate servicing tasks
once the satellite is docked.

The subsystems are housed in three MicroVAX II inicro,om;mlers. The hardware oflhe S&P
Sul_s\stem illcludcs CCI) cameras, video digiliz,'rs, fram,' lmll,'rs, 1MI:EX (a CIl:";lOIII pipelined

vid,'c; processor), a lime-co,h' generator with millisecond 1,r,'cisi m, and a M icroVA X 11 COlUputer.

l{s s_>l'tware is wrilten in Pascal and is based on a locally wri;len vision software lil_rary. The

hardware of lhe _ICM Sul,sys/('m includes PUMA .%0 r,_l-)t :u'ms, Lord f¢)r('e/tor(ple sellsors_

two M icroVAX I1 COmlmlcrs, and (!nimal ion pneumatic l>:_ralh I grilq_ers. It s software is written

in (:, and is I>;m,'_l on a robot language called t{('('L.

This papc:r describes tl_e two subsyslems and I_rovi,h':. t,>t. results (m lh,' gralq>ling of lhe

satellite nlockup wilh rolal i(.,llal rales of up to :2 rplJl.

1 Introduction

NA.qA is explotin_ lhe l>_ssil>ilili¢'s of using autono::_ous sv,,_ eln ; ill place ol'asl rot:auts fl)r dangerous

or l ilne-consuming operali(ms, such as extra v(,hh'ulav a(livi'v. The NASA 'l'eh,r<>l>ol Research

I've.jeer is looking at llw use _,f a:ll(momous systems for t)el I'o:'::,ing ol:-orlfit asselnldy, lnaintenance.

and repair operalhms. All of llwse op,,ralions present cl_alh,ny,'s It, lho field of rol*ot it's.

This paper is colkcerned with one challenge associated v,ilh ll:e repair of arliticial earlh-o'b I ng

satellites. That challenge cenlets at'ound the facl that Jn_,sl s_lch salelliles ,re spin-slal>ilized. In

3O7

ORIGINAL PAGE

BLACK AI',,:D WHITE i:.'ii,JfOGRAPPI

\

\

Figure 1: Testbed Setup

order to repair such a satellite, it must first be de-spun. An investigation was made into tile use of

a dual-arm robot with visual assist to grapple and de-spin a rotating satellite mockup.

The Testbed of tile NASA Telerobot Project, housed at the Jet Propulsion Laboratory, is

composed of several subsystems. Two of these subsystems, the Sensing and Perception (S_P)

Subsystem and the Manipulators and Control Mechanization (MCM) Subsystem, were directly

involved in the effort to grapple a spinning satellite. S&P visually acquired and tracked tilt rotating

satellite and transmitted the satellite's state information to MCM in real time. MCM, using tile

data from Sg:P, directed the arms to grab the satellite and to stop its motion as shown in Figure 1.

Below we will discuss these two subsystems and provide tile details of tile satellite grappling
technique.

308

2 Testbed Setup

The Testbed of the NASA Telerobot Project is a facility which is composed of many parts. It is

divided into three main sections: the computer facility, the operator control station, and the test

area.

In the computer facility there are various computer systems to support the subsystems. Included

among them are several MicroVAX II microcomputers, Sun workstations, and a Symbolics Lisp

machine. There are also other specialized processors used at low levels of support.

The operator control station provides a place for the operators during Testbed use. It has

working surfaces, computer terminals, video monitors, and joysticks. It is situated so as to give a

good view of the test area.
The test area contains everything else. It houses the t_'o manipulation arms, plus a third arm

used for holding movable video cameras (not used for satellite grappling), and all of the video

cameras. The satellite mockup, as well as other targets for telerobotic research, are in this area. In

addition, there is a calibration fixture used to calibrate the cameras in SL:P and the arms in MCM

to a common coordinate system.

Satellite Mockup

The satellite mockup is a 350-pound model of a generic artificial satellite. It is suspended from a

counterweight by a long cable which is connected -- through a fairly wide opening in the top of

the satellite -- to a gimbal near its center of mass. The method of suspension allows the satellite

to move within a small area in a manner similar to its free space counterparts.

The sides of the mockup consist of real solar panels, framed in the gold-foil insulating material

typical of real satellites. This gives S&P a realistic visual target, complete with visual clutter and

specular reflections.
On one side of the mockup there is a removable task panel, under which may be mounted

various elements such as line replacement modules and electrical connectors. These can be used to

demonstrate servicing tasks once the satellite is grappled and docked.

S&P Hardware

The S&P Subsystem hardware consists of a DEC MicroVAX II microcomputer and several other

pieces of special equipment. There is a time-code generator, shared with MCM, which allows

time tagging the data to millisecond precision. There are five video cameras. Three of them are
mounted to the rear of the test area, yielding good overall views of the work region. The other

two are mounted on a robot arm and are used for close-up views; they were not used in the work

described here.

The cameras feed their signals into video digitizers, which in turn feed a custom video pipelined

processor. The processor is called IMFEX, the Image Feature Extractor, and it uses a thresholded

modified-Sobel operator to find high-contrast edges in video images. The output of IMFEX is fed

into video buffers for storage, access, and manipulation by the MicroVAX II. The video buffers

have internal D/A converters to allow viewing of their contents, which may be a captured frame,

graphics generated by the MicroVAX II, or a combination of the two. A 16-by-16 video crossbar

switchis usedto routeall of the analogvideosignalsbetweenthe componentsmentionedabove,
and overto the videomonitorsin the operatorcontrolstationfor display.

S&:P Software

TheS&Psoftwareiscomposedof twomajorsections,bothwritten in VAX Pascal.Thefirst section
is a 30,000-linegeneral-purposevisionsoftwaresupportlibrary. It containsthe softwareusedto
control and accessthe varioushardwarecomponentsof S&:P,as well asroutinesto performall
mannerof supportservicesfor machinevision. Includedin this library are the routinesusedto
performthe functionsof acquisitionandtrackingdescribedbelow,to performcameracalibration,
and to dealwith objectmodels.The secondmajorsectionof thesoftwareis a 20,000-linesoftware
packagewhichis the S_:P-specificapplicationcode.It is decomposedinto fiveseparatetasks,all
running concurrently.

MCM Hardware

TheMCM Subsystemhardwareconsistsof two PUMA560robot arms.Eacharmis equippedwith
a Unimationpneumaticparallelgripperwhichhasbeenfitted with simpleparallelfingersholding
a specialgrapplingtool. Eachtool hasa flexiblehandleanda Velcropad at the endin orderto
hold to the satellitemockup,whichhas the two complementaryVelcropadsattachedon either
sideof the task panel. Eacharm is alsoequippedwith a commercial(Lord Corporation)wrist
force/torquesensor.Thewrist force/torquesensorsareusedto readtheforcesandtorquessensed
in all six dimensions.The computinghardwareconsistsof two DEC MicroVAX II computers.
Eachoneis interfacedto the LSI 11/73microprocessorsof theUnimatecontrollervia two DRVll
parallelcards.The UnimatecontrollerreadstheLORD force/torquesensordata throughanother
DRVll parallelcard. The S_zPobject statedata is obtainedthrougha 9600baudRS-232serial
line connectedbetweenthe S&PMicroVAXto the MCM MicroVAXs.Figure2 showsa schematic
drawingof the hardware.

MCM Software

The MCM MicroVAXsrun undera modifiedBerkeleyBSD4.3Unix operatingsystem.The main
robot languageis RCCL (Robot Control C Library) whichwasdevelopedoriginally at Purdue
Universityby VincentHayward[3]basedonRichardPaul'sroboticstextbook[4]andlaterenhanced
by John Lloyd [5] and ported to a MicroVAX II [6]. RCCLis a collectionof C functionswhich
provideeasyandgeneralrobotprogramming.Thesoftwarecanbepartitionedinto twomainparts:
the planningleveland thereal-timecontrollevel.

Theplanninglevelconsistsof functionsthat allowtheprogrammerto specifydesiredcoordinate
framesfor the robotend-pointtargetposition.Theprogrammermustspecifyseveralframes,such
aswherethe robot is in the world frameand in the tool fraane.He/shemust alsospecifythe
velocity,and whetherthe motionshouldbecarriedout in Cartesianor joint-interpolatedmodes.
The relationshipsbetweenthe variousframesareenteredin the codeexactlyasonewouldwrite
themin mathematicalnotations.A functioncalledMakepositioninterpretsthe codeand setsup

310

S&P
Mic_VAX II

TIME-CODE
GENERATOR

Serial lntea'fac¢

MicroVAX II Mic_VAX II
RCCL RCCL

UNIX/C UNIX/C

Figure 2: Schematic drawing of the hardware

appropriate matrix equations. Its general form is:

p = Makeposition ("P', Z,..., T6,..., R, EQ, A, B,..., U, TOOL, R)

This simply sets up a matrix equation

(Z...)T6(...R) = AB...U (1)

The main objective is to solve this equation for T6 as

T6 = (Z...)-I(AB...U)(...R) -1 (2)

where T6 represents a homogeneous transformation relating the link 6 frame in the 0th (or shoulder)

frame. The planning level runs in a normal time-shared manner. A program can develop many

motions and place them in a queue for the control level to execute sequentially. An important

feature of RCCL is that it allows one to modify the matrices in equation (1) in the control level.

311

These modifications can be triggered either by the planning level or by external sources such as

from S_:P object state data or force/torque data. This feature has been used extensively in our

work to implement both the tracking and force/compliant control during grappling the satellite
mockup.

The control level which is called RCI (Robot Control Interface) is a general robot programming

environment. One can write his/her own robot control programs and create custom trajectories to

run the robots. In the normal RCCL operations this level receives the motions from the motion

queue and uses a trajectory generator to interpolate between the specified via points. Finally,

inverse kinematics is performed to obtain the joint angle set points to be sent to the joint micro-
processors via the LSI 11/73 computer.

The system works by a hardware clock (located in the Unimation controller) which periodically

sends an interrupt to a communication program in the LSI 11/73. At every interrupt, this program

gathers information from the arm -- which includes the joint angles and other sensors that have

been interfaced to the LSI 11/73 -- and makes them available to the MicroVAX in shared memory; it

signals the MicroVAX with a hardware interrupt. The MicroVAX reads these data and immediately

sends the joint angles that have been computed in the previous cycle back to the LSI 11/73 for

execution. Note that in this implementation the VAL language is completely bypassed. The

hardware of the Unimate controller remains intact, however, and one can switch between the VAL

language and RCCL without any hardware modifications.

3 SgzP Acquisition and Tracking Algorithms

The task of watching a moving object is broken down into two stages, the first of which is called
acquisition. This is the stage wherein the object of interest is first localized within the views of the

cameras, and an initial computation is made as to its location and movement within 3-space. It is

computationally intensive, and cannot perform quickly enough on currently available computers to
keep up with a moving object in real time.

The second stage is call tracking. Tracking is more computationally efficient than acquisition,

and is used to follow the object as it moves, updating the state information that was initially
provided by acquisition.

Both stages compute the following time-tagged state information in three dimensions: position,
translational velocity, orientation, angular velocity, and a covariance matrix of these values.

Acquisition

A fully autonomous acquisition algorithm is currently under development at the Jet Propulsion

Laboratory and was not tested in the grappling experiment. A moment's reflection, however, will

reveal that it is not possible to track an object without first acquiring it in some fashion. In order to

satisfy this need, a "quick-and-dirty" operator-assisted version called hand acquisition was designed
for the current work.

In hand acquisition, an a priori position is used as a starting point. Using this position, S&P

displays a wire-frame projection of the satellite's object model in the display, superimposed on the

raw video. While the satellite was held still, the operator uses the joysticks to move the wire-frame

overlay -- and thus the state of the object model -- until it roughly overlaps the satellite mockup

312

in all camera views. Once complete, the operator signals that tracking may start. Hand acquisition

of a moving satellite was attempted with mixed results.

Tracking

The tracking algorithm was designed by Donald B. Gennery. Detailed descriptions of the algorithm

are given elsewhere [1,2]. The tracker performs its operations in five major phases. In the first

phase it acquires a frame of video and notes the time tag associated with the data. In the second

phase the old object state is propagated forward to the time of the new data. In the third phase a

projection of the propagated object state's edges is made into the view of the camera which took the
new data. In the fourth stage measurements axe made of tile discrepancies between the locations

of edge points in the projected edges and the locations of edge points in the data. In the fifth and

final stage the projected object state is adjusted by using a least-squares technique with respect to
the measurements taken in the fourth stage. Uncertainties are propagated and determine the effect

that any given data set has on the current object state.
These five stages constitute one tracking cycle. Between cycles, the updated state information

is sent to MCM. Then the tracker selects the next camera and performs another tracking cycle. It

continues in this fashion until told to stop or until it loses track. If track is lost, S&P cycles back

into acquisition and repeats the entire process.

4 MCM Tracking and Grappling Algorithms

The two robots are driven independently by two MicroVAXs. They run the same copy of the

software except each has its own coordinate frames because of the different locations of the robots

and because they grapple different points on the satellite m<)ckup. Two machines are used because

the computing power of one MicroVAX is not adequate to control two robots during the tracking

phase. The two robots are coordinated because they are basically driven from the same source of

data- the S&P object states of the satellite mockup.

The MCM software receives the satellite object state at a rate of about two times per second.

The object state consists of a time-stamp, position vector and orientation quaternion of the centroid

of the satellite mockup, the translational and angular velocities, and their covariances.

A complete cycle of satellite grappling is comprised of four phases: approach, tracking, grappling,

and docking.

In the approach phase, the MCM software monitors the orientation and angular velocity of the

satellite mockup. It deploys the robots to the approach positions when the satellite mockup is

spinning with a rate at or below two rpm. The approach positions are chosen so that the robots

have the maximum work space for tracking and grappling. The approach position of the left robot

is described by the follow equation:

o TL °TL 6_TL =w = :TI_ (3)

where '_TL is a transformation describing the 0th frame, 6TL is the tool frame, and 'fTL is the

approach frame of the left robot as shown in Figure 3.

The robots wait in the approach positions until the mockup has rotated such that the pads are

facing the tools with a designed distance of 100mm. At that moment the robots start tracking the

313

0

LeftRobot

P

W

P

Right Robot

Figure 3: Coordinate Frame Assignments

satellite mockup driven by the S&P object state data. At the same time the distances between the

tools and the pads axe gradually reduced until they contact each other. The following kinematic

equation is used to specify the motion in the tracking phase:

OrLe w •_TL = , T pTL (4)

where _T is a transformation describing the centroid of the satellite mockup frame, and _TL is the
transformation from the satellite mockup centroid to the left pad. The distance between the tools

and the pads, initially 100mm, is faked in equation (4) by making the tool 100mm longer than its
physical length. This distance is reduced during tracking until contact.

In RCCL, one can generate trajectories by using the trajectory generator or by an external

meazls. The latter is made possible since one can modify any of the transformations except T6

in equation (1) in real time. The satellite tracking uses the latter strategy since it would be too

time-consuming if planning is done each time MCM receives an updated object state.

Hence tracking is done in the control level which drives the robots in the following way: Every

time an object state is received, the current frame of the satellite _T is predicted azcording to the

received data, and the frame of the tool _T is computed from the joint angles of the robot. The

314

difference between '_TL and _TL is computed from

e e w=- wTL pTLAL pTL =

where _T = _T × iT. In order to track the satellite, the' robots are required to have moved
this A by the time the next state update is received. This means that, in every sampling period,

the robots are moved by _ = A × -_, where t is the robot cc,ntrol sampling period, and T is the

intcr-arrival period of the object state.

The tools approach the grappling pads until a contact is initiated. This is sensed by the

force/torque sensors and after the c.ontact the motion is ch_nged from vision-based servoing to

force servoing. The following kinematic equation is used to specify the motion in the grappling

phase:
3

'_TL °TL 6TL = _T pTL COMPLY (6)

where COMPLY is a "small" time-varying transformation and has the following form

COMPLY

1

- _#y
0

6#= I
0 ()

(7)

Since the COMPLY transformation is placed after the pTL, it will modify the ideal trajectory by

a small amount each sample time. Because of integral force control, the COMPLY transformation

will be modified based on the force/torque sensor readings and will keep its value even after the
forces have been nulled. Since the satellite mockup cannot be stopped instantaneously once it is

grappled, the software decelerates the mockup according to a trajectory which is generated based

on the initial velocity at the moment of contact.

Once the satellite mockup is stopped, it is pulled to the docking fixture. Active force control

is used to nullify the force built up due the dual-arm coordiaated motion. If grappling does not

occur -- detected by the lack of contact between the tools and pads -- the whole cycle is repeated

by letting the satellite mockup spin one more time.

5 Conclusions and Future Improvements

We have successfully grappled the satellite mockup with rolational rates of up to 2 rpm. With

higher speed, due to the communication delay and control i_laccuracies, the robots start to miss

the pads.

In the present MCM implementation, the computation is performed with two MicroVAX com-

puters, which limits its control rate to once every 28 msec. h_ the near future, we plan to port our

software to a Sun 4/260 computer which will increase the control rate to 200 Hz. This increase

will improve the force control capabihty and hence reduce th,, build-up of forces at the moment of

contact and subsequent grappling. The improved version of RCCL [7,8] can coordinate trajectories

for two robots. As such, more precise coordination both _tt tlke planning and control levels can be

achieved.

315

6 Acknowledgements

The research described in this document was performed at the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

[1] D. B. Gennery, "Tracking Known Three-Dimensional Objects," Proceedings of the AAAI Second

National Conference on Artificial Intelligence, Pittsburgh PA, August 1982, pp. 13-17.

[2] B. Wilcox, D. B. Gennery, B. Bon, and T. Litwin, "Real-Time Model-Based Vision System

for Object Acquisition and Tracking," Proceedings of the SPIE International Conference, Los
Angeles CA, January 1987.

[3] V. Hayward, and R. Paul, "Robot Manipulator Control Under Unix RCCL," The International

Journal of Robotics Research, Vol. 5, No. 4, Winter 1987, pp. 94-111.

[4] R. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, 1981.

[5] J. Lloyd, "Implementation of a Robot Control Development Environment," M.S. Thesis, De-
partment of Electrical Engineering, McGill University, Montr6al, Qu6bec, 1985.

[6] J. Lee, S. Hayati, et al., "Implementation of RCCL, a Robot Control C Library, on a MicroVAX

II," Proceedings of the SPIE Conference on Advances in Intelligent Robotics Systems, Vol. 726,
October 1986, Cambridge MA, pp 26-31.

[7] J. Lloyd, M. Parker, and R. McClain, "Extending the RCCL Programming Environment to

Multiple Robots and Processors," Proceedings of the IEEE International Conference on Robotics

and Automation, Philadelphia PA, April 1988, pp. 465-469.

[8] S. Hayati, T. Lee, K. Tso, P. Backes, and E. Kan, "The JPL Telerobot Manipulator Control and

Mechanization Subsystem (MCM)," Proceedings of the NASA Conference on Space Telerobotics,
Pasadena CA, January 1989.

316

